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Notes on the Convergence of Gradient Descent

1 Definitions

Definition 1 (Taylor Series). The Taylor series of a real or complex-valued function f(y) that is infinitely
differentiable at a value x is the power series
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Definition 2 (Convex Function [1]). A function f:R™ — R is convex if the domain of f is a convex set
and if for all z,y € R™ with 0 < A <1, we have

fOz+ (1 =Ny) < Af(x)+ (1= A)f(y) (2)

Geometrically, this definition is saying that the line segment between (x, f(x)) and (y, f(y)) lies above
the graph of f.

Definition 3 (First-Order Condition [1]). Suppose a function f is differentiable (i.e. its gradient V f exists
at each point in dom f). Then f is convex if and only if dom f is convex and

fy) = fl@) + V(@) (y—=) (3)
holds for all x,y € dom f.

Note that the function f(z) + Vf(z)"(y — z) is the first-order Taylor approximation of f near x.
The inequality in the definition above is saying that the function f is convex if the first-order Taylor
approximation is a global underestimator of the function. If we change the inequality to >, then we have
strong convexity.

Definition 4 (Lipschitz Continuity). A function f : R™ — R™ is Lipschitz continuous at = € S, where
S C R™, if there is a constant C such that

1 (y) = F@)I < Clly — =], (4)

for all y € S sufficiently near x.

Definition 5 (Lipschitz Smooth). A function f : R™ — R™ is Lipschitz smooth with constant C if its
derivatives are Lipschitz continuous with constant C',

IVf(y) = V@) < Clly — | ()
for any x,y € dom f.

One can think of the last two definitions as a “stretching” bound. The constant C' bounds the function
f from growing (or stretching) too fast. This goes the same for the gradients of f for the definition of
smoothness.

Definition 6 (Cauchy-Schwarz Inequality). The Cauchy—Schwarz inequality states that for all vectors u
and v of an inner product space,

[{w, 0)] < [lull - [Jv]l. (6)



2 Properties
Proposition 1. A differentiable function f is convex if and only if dom f is convex and
(VI(@) = Vi) (@—y) >0, (7)
for all z,y € dom f (i.e. the gradient Vf:R™ — R" is a monotone mapping.
Proof. If the function f is differentiable and convex, then we have the two inequalities:
F) = f(2) + V(@) (y - =) (8)
F@) 2 f@) + V) (@ —y), (9)

where z,y € dom f. Combining (summing) these two inequalities gives us what we need. Note that if V f
is monotone, then ¢'(t) > ¢’(0) for ¢ > 0 and t € dom g, where

9(t) = flz +t(y — ) (10)
gt)=Vf(x+tly—x)" (y—a). (11)
Hence,
fly) =9(1) (12)
=90+ [ g (13)
> g(0) +¢'(0) (14)
= f(z)+ Vf(2) (y— =), (15)

which is the first-order condition for convexity.

Proposition 2. If a function f is Lipschitz smooth with parameter C', then from the Cauchy-Schwarz
inequality, we have that

(Vf(z) = V) (& —y) < Cle -yl (16)
for all z,y € dom f.

Proof. The proof is quite straightforward. The Cauchy-Schwarz inequality implies that

(Vi) =VIy) (@ —y) <[|Vf@) = Vil e -yl

Combining this inequality with Lipschitz smoothness, we get

(Vf(z) = Vi) (z—y) <Cla—yl>

Proposition 3. If a convex function f is Lipschitz smooth with parameter C', we have that

F) < F@) + V@) Tl — )+ Sy a7)
for all z,y € dom f.

Proof. Recall the fundamental theorem of calculus:

b
/ W (2) dz = h(b) — h(a).



Consider arbitrary z,y € dom f and define g(7) = f(ry + (1 — 7)x) = f(x + 7(y — 2)) . Then, the function
g(7) is defined for 7 € [0,1] since the dom f is convex. Then,

g(r)=Vfe+rly—a) (y—z) (18)
g(0)=Vf(z) (y—a). (19)

Subtracting these two, we get

g(1) =g 0) = (Vf(z+7(y —2)) = Vf(2)) (y - 2) (20)
<N(Vf+7ly—2) = V@) ly - (21)
<Clir(y =) - lly — =l (22)
=7Clly — x| - ly — ]| (23)
= 7Clly — =|*. (24)

We obtain the inequalities from using the Cauchy-Schwarz inequality and from the Lipschitz smoothness
property. Now, integrating ¢’(r) from 0 to 1,

Agmﬁ=mw—am. (25)

Note that g(1) = f(y) = g(0) + fol g'(7). Solving for f(y), we have

f@%=ﬂ®+£sﬂﬂ (26)
< 9(0) + ¢'(7) (27)
< 9(0) + ¢/(0) + 7Cly — 2| (28)
= f(@) + Vi) Ty —2) + 7Cly — z|> (20)

Setting 7 = % , we get the inequality we want. Note that we get the first inequality from using the Mean

Value Theorem.
O

Proposition 4 (Gradient Properties). Let f be a function that is convex, differentiable, and L -Lipschitz
continuous with L > 0. Suppose that f* is the optimal value of the objective function, i.e.

f* = inf £(6), (30)
and f* is attained at 6*. Then, if a gradient step is given by
Or+1 =0 —nV f(0:), (31)
we have the inequalities
J(Or1) < f(6r) (32)
1041 = 07| < {6 — 67]]. (33)

This is a long proposition, but the idea behind it is simple. If our objective function f satisfies the
properties we have been talking about thus far, then the objective function value and error between the
current € and the optimal 6 decreases over consecutive iterations.

Proof. Let the gradient step be defined as

Oi41 =0 =V f(0r). (34)



Since f is L-Lipschitz and convex, by the previous proposition, we have
F(Ous1) < F0) + V70T Burs = 00) + 510011 — 0P
= J(0)+ V10T O~ 19 F(0) ~ 00) + 50—V F(00) — 00) P
L
= f(00) + VF(0) (=nVF(0)) + S l=nV F (O]
2L
= 1(0) = (VS (0) TV (00) + TV £ (0]
o, 1L 2
= F(O) = nllV IO + IV S (0]
L
= 1160 - (12 ) I 6P

If welet 0 <n<1/L, then

L
f(Or1) < f(0:) —n (1 - 772> IV £(0:)]
< f(6) = 21V
From this, we can conclude that

f(Or1) < f(0r).

Next, from the convexity of f, we have
F(0r) < F(0) + Y f(0) (0 = 07).

Combining the equation above with equation (42), we have
F(Br0) < F67) + £(8) (6, = 67) = V£8P
1 1
= f(0") + H(et —0i11) " (0, —07) — %H@t — Opa ||
* 1 * 1 * *
= f(6") + %HGt —0*|* - %(H@t —0*[12 =2V £(0:)) T (6: — %) + [0V f(6:) 1)
_ * i _A*N12 _ i _0* _ 2
= 10%)+ 520 = 071 = 3160 — 0" =gV (00)]
* 1 * *
=f(0") + 2 (10 — 0*[1> = [|6e1 — 0%]1%) -

This last equation implies that

1641 — 07 <16 — 67]].

Now we have everything at our fingertips for the convergence analysis.

3 Convergence Analysis of Gradient Descent
Theorem 1. Let f:R? — R be a L-Lipschitz convex, differentiable function with

0* = argmin f(0).
0



Then, gradient descent with step-size n < 1/L satisfies

160 — 671

£(0) < £(0%) + 20

where J is the total number of iterations.

Proof. Recall from Proposition 4 that

* 1 * *
f(Or1) = f(07) < % (16 = *11% = 1|01 — 671I7) -
If we sum the equation above for t =0,...,J — 1, we have
J—1 1
D FOe) = £0%) < o (160 = 0712 = 116 — 0|%)
t=0 N
160 — 6%
— 277 .
This easily translates to
oy o 100 — 0%
. _ < W07
T-(f160) - £0) <
160 — 6%
05)— f(6") < —->—.
(6) - £07) < 200

The conclusion here is that the number of iterations to reach f(6;) — f(6*) <.
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