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Notes on the Convergence of Gradient Descent

1 Definitions
Definition 1 (Taylor Series). The Taylor series of a real or complex-valued function f(y) that is infinitely
differentiable at a value x is the power series

f(x) +
f ′(x)

1!
(y − x) + f ′′(x)

2!
(y − x)2 + f ′′′(x)

3!
(y − x)3 + . . . (1)

Definition 2 (Convex Function [1]). A function f : Rn → R is convex if the domain of f is a convex set
and if for all x, y ∈ Rn with 0 ≤ λ ≤ 1 , we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2)

Geometrically, this definition is saying that the line segment between (x, f(x)) and (y, f(y)) lies above
the graph of f .

Definition 3 (First-Order Condition [1]). Suppose a function f is differentiable (i.e. its gradient ∇f exists
at each point in dom f ). Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)>(y − x) (3)

holds for all x, y ∈ dom f .

Note that the function f(x) + ∇f(x)>(y − x) is the first-order Taylor approximation of f near x .
The inequality in the definition above is saying that the function f is convex if the first-order Taylor
approximation is a global underestimator of the function. If we change the inequality to > , then we have
strong convexity.

Definition 4 (Lipschitz Continuity). A function f : Rn → Rm is Lipschitz continuous at x ∈ S , where
S ⊂ Rn , if there is a constant C such that

‖f(y)− f(x)‖ ≤ C‖y − x‖, (4)

for all y ∈ S sufficiently near x .

Definition 5 (Lipschitz Smooth). A function f : Rn → Rm is Lipschitz smooth with constant C if its
derivatives are Lipschitz continuous with constant C ,

‖∇f(y)−∇f(x)‖ ≤ C‖y − x‖ (5)

for any x, y ∈ dom f .

One can think of the last two definitions as a “stretching” bound. The constant C bounds the function
f from growing (or stretching) too fast. This goes the same for the gradients of f for the definition of
smoothness.

Definition 6 (Cauchy-Schwarz Inequality). The Cauchy–Schwarz inequality states that for all vectors u
and v of an inner product space,

|〈u, v〉| ≤ ‖u‖ · ‖v‖. (6)
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2 Properties
Proposition 1. A differentiable function f is convex if and only if dom f is convex and

(∇f(x)−∇f(y))>(x− y) ≥ 0, (7)

for all x, y ∈ dom f (i.e. the gradient ∇f : Rn → Rn is a monotone mapping.

Proof. If the function f is differentiable and convex, then we have the two inequalities:

f(y) ≥ f(x) +∇f(x)>(y − x) (8)

f(x) ≥ f(y) +∇f(y)>(x− y), (9)

where x, y ∈ dom f . Combining (summing) these two inequalities gives us what we need. Note that if ∇f
is monotone, then g′(t) ≥ g′(0) for t ≥ 0 and t ∈ dom g , where

g(t) = f(x+ t(y − x)) (10)

g′(t) = ∇f(x+ t(y − x))>(y − x). (11)

Hence,

f(y) = g(1) (12)

= g(0) +

∫ 1

0

g′(t)dt (13)

≥ g(0) + g′(0) (14)

= f(x) +∇f(x)>(y − x), (15)

which is the first-order condition for convexity.

Proposition 2. If a function f is Lipschitz smooth with parameter C , then from the Cauchy-Schwarz
inequality, we have that

(∇f(x)−∇f(y))>(x− y) ≤ C‖x− y‖2, (16)

for all x, y ∈ dom f .

Proof. The proof is quite straightforward. The Cauchy-Schwarz inequality implies that

(∇f(x)−∇f(y))>(x− y) ≤ ‖∇f(x)−∇f(y)‖ · ‖x− y‖

Combining this inequality with Lipschitz smoothness, we get

(∇f(x)−∇f(y))>(x− y) ≤ C‖x− y‖2.

Proposition 3. If a convex function f is Lipschitz smooth with parameter C , we have that

f(y) ≤ f(x) +∇f(x)>(y − x) + C

2
‖y − x‖2, (17)

for all x, y ∈ dom f .

Proof. Recall the fundamental theorem of calculus:∫ b

a

h′(x) dx = h(b)− h(a).
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Consider arbitrary x, y ∈ dom f and define g(τ) = f(τy+ (1− τ)x) = f(x+ τ(y− x)) . Then, the function
g(τ) is defined for τ ∈ [0, 1] since the dom f is convex. Then,

g′(τ) = ∇f(x+ τ(y − x))>(y − x) (18)

g′(0) = ∇f(x)>(y − x). (19)

Subtracting these two, we get

g′(τ)− g′(0) = (∇f(x+ τ(y − x))−∇f(x))>(y − x) (20)
≤ ‖(∇f(x+ τ(y − x))−∇f(x))‖ · ‖y − x‖ (21)
≤ C‖τ(y − x)‖ · ‖y − x‖ (22)
= τC‖y − x‖ · ‖y − x‖ (23)

= τC‖y − x‖2. (24)

We obtain the inequalities from using the Cauchy-Schwarz inequality and from the Lipschitz smoothness
property. Now, integrating g′(τ) from 0 to 1 ,∫ 1

0

g′(τ) = g(1)− g(0). (25)

Note that g(1) = f(y) = g(0) +
∫ 1

0
g′(τ) . Solving for f(y) , we have

f(y) = g(0) +

∫ 1

0

g′(τ) (26)

≤ g(0) + g′(τ) (27)

≤ g(0) + g′(0) + τC‖y − x‖2 (28)

= f(x) +∇f(x)>(y − x) + τC‖y − x‖2. (29)

Setting τ = 1
2 , we get the inequality we want. Note that we get the first inequality from using the Mean

Value Theorem.

Proposition 4 (Gradient Properties). Let f be a function that is convex, differentiable, and L -Lipschitz
continuous with L > 0 . Suppose that f∗ is the optimal value of the objective function, i.e.

f∗ = inf
x
f(θ), (30)

and f∗ is attained at θ∗ . Then, if a gradient step is given by

θt+1 = θt − η∇f(θt), (31)

we have the inequalities

f(θt+1) < f(θt) (32)
‖θt+1 − θ∗‖ < ‖θt − θ∗‖. (33)

This is a long proposition, but the idea behind it is simple. If our objective function f satisfies the
properties we have been talking about thus far, then the objective function value and error between the
current θ and the optimal θ decreases over consecutive iterations.

Proof. Let the gradient step be defined as

θt+1 = θt − η∇f(θt). (34)
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Since f is L-Lipschitz and convex, by the previous proposition, we have

f(θt+1) ≤ f(θt) +∇f(θt)>(θt+1 − θt) +
L

2
‖θt+1 − θt‖2 (35)

= f(θt) +∇f(θt)>(θt − η∇f(θt)− θt) +
L

2
‖(θt − η∇f(θt)− θt)‖2 (36)

= f(θt) +∇f(θt)>(−η∇f(θt)) +
L

2
‖−η∇f(θt)‖2 (37)

= f(θt)− η(∇f(θt)>∇f(θt)) +
η2L

2
‖∇f(θt)‖2 (38)

= f(θt)− η‖∇f(θt)‖2 +
η2L

2
‖∇f(θt)‖2 (39)

= f(θt)− η
(
1− ηL

2

)
‖∇f(θt)‖2. (40)

If we let 0 ≤ η ≤ 1/L , then

f(θt+1) ≤ f(θt)− η
(
1− ηL

2

)
‖∇f(θt)‖2 (41)

≤ f(θt)−
η

2
‖∇f(θt)‖2. (42)

From this, we can conclude that

f(θt+1) ≤ f(θt). (43)

Next, from the convexity of f , we have

f(θt) ≤ f(θ∗) +∇f(θt)>(θt − θ∗). (44)

Combining the equation above with equation (42), we have

f(θt+1) ≤ f(θ∗) + f(θt)
>(θt − θ∗)−

η

2
‖∇f(θt)‖2 (45)

= f(θ∗) +
1

η
(θt − θt+1)

>(θt − θ∗)−
1

2η
‖θt − θt+1‖2 (46)

= f(θ∗) +
1

2η
‖θt − θ∗‖2 −

1

2η
(‖θt − θ∗‖2 − 2(η∇f(θt))>(θt − θ∗) + ‖η∇f(θt)‖2) (47)

= f(θ∗) +
1

2η
‖θt − θ∗‖2 −

1

2η
‖θt − θ∗ − η∇f(θt)‖2 (48)

= f(θ∗) +
1

2η

(
‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2

)
. (49)

This last equation implies that

‖θt+1 − θ∗‖ < ‖θt − θ∗‖. (50)

Now we have everything at our fingertips for the convergence analysis.

3 Convergence Analysis of Gradient Descent
Theorem 1. Let f : Rd → R be a L -Lipschitz convex, differentiable function with

θ∗ = argmin
θ

f(θ). (51)
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Then, gradient descent with step-size η ≤ 1/L satisfies

f(θJ) ≤ f(θ∗) +
‖θ0 − θ∗‖2

2ηJ
, (52)

where J is the total number of iterations.

Proof. Recall from Proposition 4 that

f(θt+1)− f(θ∗) ≤
1

2η

(
‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2

)
. (53)

If we sum the equation above for t = 0, . . . , J − 1 , we have

J−1∑
t=0

f(θt+1)− f(θ∗) ≤
1

2η

(
‖θ0 − θ∗‖2 − ‖θJ − θ∗‖2

)
(54)

≤ ‖θ0 − θ
∗‖2

2η
. (55)

This easily translates to

J · (f(θJ)− f(θ∗)) ≤
‖θ0 − θ∗‖2

2η
(56)

(f(θJ)− f(θ∗)) ≤
‖θ0 − θ∗‖2

2ηJ
. (57)

The conclusion here is that the number of iterations to reach f(θJ)− f(θ∗) ≤ ε .
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